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Why Is This New?

What Do We Need?

Two X-ray telescopes with:

Substantially different viewing angles;

Same/similar passbands.

This has not previously been available...

...until recently!

Solar Orbiter/STIX 6 – 10 keV (≳8 MK)

Hinode/XRT Be-thick filter (≳5 MK)
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How Do We Reconstruct Sources in 3-D?
Why Is This New?

Comparing STIX & XRT for X-ray 3-D Reconstruction

Solar Orbiter/STIX Hinode/XRT

Solar Orbiter/STIX Hinode/XRT

Viewing Angle Variable Earth
Passbands Spectral Imager (>4 keV) Imaging filters

Temp. Sensitivity ≳8MK ≳5MK (Be-thick filter)
Angular Resolution 7” 2”
Spatial Resolution 1400 km (0.3 AU) 1420 km (1 AU)
Max. Cadence 0.5 s (intensity-dependent) 2 s
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1: 3-D Evolution of a Thermal Loop-top Source
2. How Does Geometry Impact Thermodynamic Evolution?
3. How Do Area-to-Volume Scaling Laws Perform?

Key Questions

1 What is the 3-D evolution of a flare’s thermal X-ray loop-top
source?

2 How does the source’s height and volume impact and its
thermodynamic evolution?

3 How well do traditional area-to-volume scaling laws
(V ∼ A3/2) approximate the 3-D volume?
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1: 3-D Evolution of a Thermal Loop-top Source
2. How Does Geometry Impact Thermodynamic Evolution?
3. How Do Area-to-Volume Scaling Laws Perform?

Result 2: X-ray Source Thermodynamic Evolution

9

10

11

12

13

So
ur

ce
 H

ei
gh

t [
M

m
] GOES 1-8A

peak time
a)

'Measured' Properties

5

6

7

El
ec

tro
n 

Nu
m

be
r

De
ns

ity
 [1

01
0  c

m
−3

 

e)
GOES 1-8A
peak time

Derived Thermodynamic Properties

2

3

4

5

So
ur

ce
 V

ol
um

e
[1

02
7  c

m
3 ] b)

2

3

4

So
ur

ce
 M

as
s [

10
14

 g
 

f)

14

16

18

Te
m

pe
0a

tu
0e

[M
K 

c)

−50

−40

−30

−20

G0
av

i2a
2io

−a
l

Po
2e

−2
ia

l E
−e

0g
y

[1
03

0  e
0g

 g)

18:48 18:52 18:56 19:00
2021-05-07 [Active Region Time]

0.5

1.0

1.5

Em
iss

io
n 

M
ea

su
re

[1
049

 c
m

−3
] d)

18:48 18:52 18:56 19:00
2021-05-07 [Active Region Time]

0.75

1.00

1.25

1.50

1.75

El
ec

tro
n

Th
er

m
al

 E
ne

rg
y

[1
03

0  e
rg

] h)

Daniel Ryan Solar X-ray Stereoscopy 11 / 27



What?
How?
Why?

1: 3-D Evolution of a Thermal Loop-top Source
2. How Does Geometry Impact Thermodynamic Evolution?
3. How Do Area-to-Volume Scaling Laws Perform?

Result 3: How Do Area-to-volume Scaling Laws Perform?

Area-to-Volume Scaling Law

V = A3/2

V : 3-D source volume

A: projected source area in image
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1: 3-D Evolution of a Thermal Loop-top Source
2. How Does Geometry Impact Thermodynamic Evolution?
3. How Do Area-to-Volume Scaling Laws Perform?

Conclusions

1 STIX & XRT enable 3-D reconstruction of flare thermal
X-ray sources for the first time.

2 Area-to-volume scaling can overestimate the volume by up to
a factor of 2, and 3-D analysis is required to capture
asymmetric geometry evolution.

3 3-D analysis provides a way to quantify volume
uncertainties.

4 3-D analysis helps us better understand the geometry,
thermodynamics, energy transport, etc. in solar flares,
especially in multi-wavelength/model comparison studies.

For more, see Ryan et al. (2023, submitted)
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Conclusions

Thank you for your attention!

For more, see Ryan et al. (2023)
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1: 3-D Evolution of a Thermal Loop-top Source
2. How Does Geometry Impact Thermodynamic Evolution?
3. How Do Area-to-Volume Scaling Laws Perform?

IMPROVING VOLUME ESTIMATES AND DERIVING VOLUME
UNCERTAINTIES
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1: 3-D Evolution of a Thermal Loop-top Source
2. How Does Geometry Impact Thermodynamic Evolution?
3. How Do Area-to-Volume Scaling Laws Perform?

How Can We Improve Our 3-D Volume Estimates?

Simply integrating the between the reconstructed cross-sections
overestimates the true volume due to inherent assumptions.

Assumptions
1 The source cross-section

is an ellipse.

2 The ellipse occupies the
maximum possible area
within the bounding box.
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1: 3-D Evolution of a Thermal Loop-top Source
2. How Does Geometry Impact Thermodynamic Evolution?
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How Can We Improve Our 3-D Volume Estimates?

Resulting Caveats

Derived geometry is an approximation.

Cross-sectional area are upper limits.

However, we can improve the volume estimates.
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How Can We Improve Our 3-D Volume Estimates?

A0 = κA′; κ = sin2 θ√
(sin2 ϕ+ρ2 cos2 ϕ)

[
1
ρ2
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tan θ

−cosϕ)
2
+( cosϕ

tan θ
+sinϕ)

2
]

A0: True cross-sectional area; A′: Derived cross-sectional area; ρ = b/a
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Result 1: 3-D Evolution of a Thermal Loop-top Source
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DEFINING SOURCE BOUNDARIES
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1: 3-D Evolution of a Thermal Loop-top Source
2. How Does Geometry Impact Thermodynamic Evolution?
3. How Do Area-to-Volume Scaling Laws Perform?

How To Define Consistent Source Boundaries in STIX &
XRT Images
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1: 3-D Evolution of a Thermal Loop-top Source
2. How Does Geometry Impact Thermodynamic Evolution?
3. How Do Area-to-Volume Scaling Laws Perform?

DO STIX & XRT SEE THE SAME VOLUME?
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1: 3-D Evolution of a Thermal Loop-top Source
2. How Does Geometry Impact Thermodynamic Evolution?
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Do STIX & XRT See the Same Volume?
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1: 3-D Evolution of a Thermal Loop-top Source
2. How Does Geometry Impact Thermodynamic Evolution?
3. How Do Area-to-Volume Scaling Laws Perform?

STIX & XRT Sources Areas From Same Viewing Angle?

In at least some cases, XRT & STIX see the same flare volume.
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1: 3-D Evolution of a Thermal Loop-top Source
2. How Does Geometry Impact Thermodynamic Evolution?
3. How Do Area-to-Volume Scaling Laws Perform?

Can STIX T & EM Predict the XRT Intensity?

Iflare = R(T )
EMv

Apix

Iflare = Flare-summed XRT intensity
R = XRT temperature response
Apix = area of XRT pixel at source
T = flare temperature

EMv = flare volume emission measure

I predxrt = 4500 DN/s I obsxrt = 3700 DN/s
Agreement within ∼20%

The plasma seen by STIX is consistent with the XRT observations.
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