3D evolution of a solar flare thermal X-ray loop-top source

Daniel Ryan^a (Presenting) Silvan Laube^a, Andrea Battaglia^{a,b}, Säm Krucker^{a,c}, André Csillaghy^a, Bogdan Nicula^d, Daniel Müller^e, Shane Maloney^f

^aFHNW, ^bETH Zürich, ^cUC Berkeley, ^dRoyal Observatory of Belgium, ^eESA ESTEC, ^fDIAS

STIX Meeting, Wrocław, 7 November 2023

U Fachhochschule Nordwestschweiz

The Sexy Part

The Sexy Part

n w Fachhochschule Nordwestschweiz

Solar X-ray Stereoscopy

The Sexy Part

The Sexy Part

< □ > <

How?

How Do We Reconstruct Sources in 3-D?

Magician's Mistake: Secrets Revealed

How Do We Reconstruct Sources in 3-D? Why Is This New?

Magician's Mistake: Secrets Revealed

Obs. 1

How Do We Reconstruct Sources in 3-D? Why Is This New?

Magician's Mistake: Secrets Revealed

Obs.2

Image of source from Obs. 2

Image of source from Obs. 1

How Do We Reconstruct Sources in 3-D? Why Is This New?

Magician's Mistake: Secrets Revealed

æ

How Do We Reconstruct Sources in 3-D? Why Is This New?

Magician's Mistake: Secrets Revealed

Image of source from Obs. 2

æ

How Do We Reconstruct Sources in 3-D? Why Is This New?

Magician's Mistake: Secrets Revealed

Image of source from Obs. 2

æ

How Do We Reconstruct Sources in 3-D? Why Is This New?

Magician's Mistake: Secrets Revealed

Daniel Ryan

Solar X-ray Stereoscopy

How Do We Reconstruct Sources in 3-D? Why Is This New?

Magician's Mistake: Secrets Revealed

Daniel Ryan

Solar X-ray Stereoscopy

How Do We Reconstruct Sources in 3-D? Why Is This New?

Magician's Mistake: Secrets Revealed

Daniel Ryan S

Solar X-ray Stereoscopy

How Do We Reconstruct Sources in 3-D? Why Is This New?

Magician's Mistake: Secrets Revealed

W Fachhochschule Nordwestschweiz

n

Daniel Ryan

How Do We Reconstruct Sources in 3-D? Why Is This New?

Why Is This New?

What Do We Need?

Two X-ray telescopes with:

- Substantially different viewing angles;
- Same/similar passbands.

This has not previously been available...

How Do We Reconstruct Sources in 3-D? Why Is This New?

Why Is This New?

What Do We Need?

Two X-ray telescopes with:

- Substantially different viewing angles;
- Same/similar passbands.

This has not previously been available...

...until recently!

- Solar Orbiter/STIX 6–10 keV (\gtrsim 8 MK)
- Hinode/XRT Be-thick filter (\gtrsim 5 MK)

How Do We Reconstruct Sources in 3-D? Why Is This New?

Comparing STIX & XRT for X-ray 3-D Reconstruction

Solar Orbiter/STIX

Hinode/XRT

Solar Orbiter/STIX	Hinode/XRT
Variable	Earth
Spectral Imager (>4 keV)	Imaging filters
\gtrsim 8 MK	\gtrsim 5 MK (Be-thick filter)
7''	2"
1400 km (0.3 AU)	1420 km (1 AU)
0.5 s (intensity-dependent)	2 s
	Solar Orbiter/STIXVariableSpectral Imager (>4 keV)≥8 MK7"1400 km (0.3 AU)0.5 s (intensity-dependent)

6 / 27

What?	1: 3-D Evolution of a Thermal Loop-top Source
How?	2. How Does Geometry Impact Thermodynamic Evolution?
Why?	3. How Do Area-to-Volume Scaling Laws Perform?

Daniel Ryan So

Solar X-ray Stereoscopy

7 / 27

|| 白戸 || || 三日 || || 三日

What?	1: 3-D Evolution of a Thermal Loop-top Source
How?	2. How Does Geometry Impact Thermodynamic Evolution?
Why?	3. How Do Area-to-Volume Scaling Laws Perform?

What is the 3-D evolution of a flare's thermal X-ray loop-top source?

э

What?	1: 3-D Evolution of a Thermal Loop-top Source
How?	2. How Does Geometry Impact Thermodynamic Evolution?
Why?	3. How Do Area-to-Volume Scaling Laws Perform?

- What is the 3-D evolution of a flare's thermal X-ray loop-top source?
- Output the source's height and volume impact and its thermodynamic evolution?

What?	1: 3-D Evolution of a Thermal Loop-top Source
How?	2. How Does Geometry Impact Thermodynamic Evolution?
Why?	3. How Do Area-to-Volume Scaling Laws Perform?

- What is the 3-D evolution of a flare's thermal X-ray loop-top source?
- Output the source's height and volume impact and its thermodynamic evolution?
- How well do traditional area-to-volume scaling laws $(V \sim A^{3/2})$ approximate the 3-D volume?

1: 3-D Evolution of a Thermal Loop-top Source

Result 1: 3-D Evolution of a Thermal Loop-top Source

What? Why?

Nordwestschweiz

^{-920&}quot; -900" -880" -860" -840" Helioprojective Longitude (Solar-X)

(日)

Daniel Rvan

1: 3-D Evolution of a Thermal Loop-top Source

2. How Does Geometry Impact Thermodynamic Evolution

How Do Area-to-Volume Scaling Laws Perform

Result 1: 3-D Evolution of a Thermal Loop-top Source

What?

Why?

э

1: 3-D Evolution of a Thermal Loop-top Source

How Does Geometry Impact

3. How Do Area-to-Volume Scaling Laws Perform?

Result 1: 3-D Evolution of a Thermal Loop-top Source

What?

Why?

 What?
 1: 3-D Evolution of a Thermal Loop-top Source

 How?
 2. How Does Geometry Impact Thermodynamic Evolution?

3. How Do Area-to-Volume Scaling Laws Perform?

Result 2: X-ray Source Thermodynamic Evolution

Why?

n w Fachhochschule Nordwestschweiz

Daniel Ryan

Solar X-ray Stereoscopy

- 1: 3-D Evolution of a Thermal Loop-top Source
 - 2. How Does Geometry Impact Thermodynamic Evolution?

3. How Do Area-to-Volume Scaling Laws Perform?

Result 3: How Do Area-to-volume Scaling Laws Perform?

What? How? Why?

Area-to-Volume Scaling Law

$$V = A^{3/2}$$

- V: 3-D source volume
- A: projected source area in image

12 / 27

	What? How? Why?	 3-D Evolution of a Thermal Loop-top Source How Does Geometry Impact Thermodynamic Evolution? How Do Area-to-Volume Scaling Laws Perform?
Conclusions		

For more, see Ryan et al. (2023, submitted)

What? How? Why?	 3-D Evolution of a Thermal Loop-top Source How Does Geometry Impact Thermodynamic Evolution? How Do Area-to-Volume Scaling Laws Perform?

STIX & XRT enable 3-D reconstruction of flare thermal X-ray sources for the first time.

For more, see Ryan et al. (2023, submitted)

Conclusions

Conclusions

- STIX & XRT enable 3-D reconstruction of flare thermal X-ray sources for the first time.
- Area-to-volume scaling can overestimate the volume by up to a factor of 2, and 3-D analysis is required to capture asymmetric geometry evolution.

For more, see Ryan et al. (2023, submitted)

Conclusions

- STIX & XRT enable 3-D reconstruction of flare thermal X-ray sources for the first time.
- Area-to-volume scaling can overestimate the volume by up to a factor of 2, and 3-D analysis is required to capture asymmetric geometry evolution.
- 3-D analysis provides a way to quantify volume uncertainties.

For more, see Ryan et al. (2023, submitted)

Conclusions

- STIX & XRT enable 3-D reconstruction of flare thermal X-ray sources for the first time.
- Area-to-volume scaling can overestimate the volume by up to a factor of 2, and 3-D analysis is required to capture asymmetric geometry evolution.
- 3-D analysis provides a way to quantify volume uncertainties.
- 3-D analysis helps us better understand the geometry, thermodynamics, energy transport, etc. in solar flares, especially in multi-wavelength/model comparison studies.

For more, see Ryan et al. (2023, submitted)

U Fachhochschule Nordwestschweiz

900

What?	1: 3-D Evolution of a Thermal Loop-top Source
How?	2. How Does Geometry Impact Thermodynamic Evolution?
Why?	3. How Do Area-to-Volume Scaling Laws Perform?

Conclusions

Thank you for your attention!

For more, see Ryan et al. (2023)

n w Fachhochschule Nordwestschwei

Why?	3. How Do Area-to-Volume Scaling Laws Perform?
How?	2 How Does Geometry Impact Thermodynamic Evolution?
What?	1: 3-D Evolution of a Thermal Loop-top Source

BACKUP SLIDES

Daniel Ryan

Solar X-ray Stereoscopy

15 / 27

★ E ► < E ►</p>

< 7

What?	1: 3-D Evolution of a Thermal Loop-top Source
How?	2. How Does Geometry Impact Thermodynamic Evolution?
Why?	3. How Do Area-to-Volume Scaling Laws Perform?

IMPROVING VOLUME ESTIMATES AND DERIVING VOLUME UNCERTAINTIES

Daniel Ryan So

Solar X-ray Stereoscopy

· ∢ ≣ ▶ 16 / 27 э

How Can We Improve Our 3-D Volume Estimates?

Simply integrating the between the reconstructed cross-sections overestimates the true volume due to inherent assumptions.

How Can We Improve Our 3-D Volume Estimates?

Simply integrating the between the reconstructed cross-sections overestimates the true volume due to inherent assumptions.

Assumptions

Daniel Ryan

E 900

How Can We Improve Our 3-D Volume Estimates?

Simply integrating the between the reconstructed cross-sections overestimates the true volume due to inherent assumptions.

Assumptions

How Can We Improve Our 3-D Volume Estimates?

Simply integrating the between the reconstructed cross-sections overestimates the true volume due to inherent assumptions.

How Can We Improve Our 3-D Volume Estimates?

Simply integrating the between the reconstructed cross-sections overestimates the true volume due to inherent assumptions.

Assumptions

- The source cross-section is an ellipse.
- The ellipse occupies the maximum possible area within the bounding box.

How Can We Improve Our 3-D Volume Estimates?

Resulting Caveats

- Derived geometry is an approximation.
- Cross-sectional area are upper limits.

How Can We Improve Our 3-D Volume Estimates?

Resulting Caveats

- Derived geometry is an approximation.
- Cross-sectional area are upper limits.

However, we can improve the volume estimates.

How Can We Improve Our 3-D Volume Estimates?

$$A_0 = \kappa A'; \qquad \kappa = \frac{\sin^2 \theta}{\sqrt{(\sin^2 \phi + \rho^2 \cos^2 \phi) \left[\frac{1}{\rho^2} \left(\frac{\sin \phi}{\tan \theta} - \cos \phi\right)^2 + \left(\frac{\cos \phi}{\tan \theta} + \sin \phi\right)^2\right]}}$$

 A_0 : True cross-sectional area; A': Derived cross-sectional area; $\rho = b/a$

Daniel Ryan

Solar X-ray Stereoscopy

19 / 27

What? Why? 3. How Do Area-to-Volume Scaling Laws Perform?

Result 1: 3-D Evolution of a Thermal Loop-top Source

What?	1: 3-D Evolution of a Thermal Loop-top Source
How?	2. How Does Geometry Impact Thermodynamic Evolution?
Why?	3. How Do Area-to-Volume Scaling Laws Perform?

DEFINING SOURCE BOUNDARIES

Daniel Ryan

Solar X-ray Stereoscopy

21 / 27

How To Define Consistent Source Boundaries in STIX & XRT Images

What?	1: 3-D Evolution of a Thermal Loop-top Source
How?	2. How Does Geometry Impact Thermodynamic Evolution?
Why?	3. How Do Area-to-Volume Scaling Laws Perform?

DO STIX & XRT SEE THE SAME VOLUME?

Daniel Ryan S

Solar X-ray Stereoscopy

23 / 27

Do STIX & XRT See the Same Volume?

Volume derived with instruments with different temperature sensitivities

Fachhochschule Nordwestschweiz

э

Do STIX & XRT See the Same Volume?

Daniel Ryan

Solar X-ray Stereoscopy

25 / 27

STIX & XRT Sources Areas From Same Viewing Angle?

In at least some cases, XRT & STIX see the same flare volume.

of the boly weater volume scaling Eaws Ferr

Can STIX T & EM Predict the XRT Intensity?

$$I_{flare} = R(T) \frac{EM_{\nu}}{A_{pix}}$$

 $\begin{array}{l} I_{flare} = {\sf Flare}{\sf -summed XRT intensity} \\ R = {\sf XRT temperature response} \\ A_{pix} = {\sf area of XRT pixel at source} \\ T = {\sf flare temperature} \end{array}$

 $EM_v =$ flare volume emission measure

 $I_{xrt}^{pred} =$ **4500 DN/s** $I_{xrt}^{obs} =$ **3700 DN/s** Agreement within \sim 20%

The plasma seen by STIX is consistent with the XRT observations.

Fachhochschule Nordwestschweiz